数字引领时代  智能开创未来

10.25 题目:A Tensor Estimation Approach to Multivariate Additive Models

报告时间:2018年10月25日上午10点+
报告地点:博识楼434室


学术报告2:
Title: A Tensor Estimation Approach to Multivariate Additive Models
Abstract: We consider parsimonious modeling of high-dimensional multivariate additive models (MAM) using regression splines, with or without sparsity assumptions. The approach is based on treating the coefficients as a third-order tensor and a Tucker decomposition is used to reduce the number of parameters in the tensor. The method can avoid the statistical inefficiency caused by estimating a large number of nonparametric functions. We establish the convergence rate of the proposed estimator. Numerical examples are presented to demonstrate the advantages of the proposed novel approach.

刘旭博士2011年在云南大学获得博士学位。先后于2011-2013年在美国西北大学从事博士后研究,然后于2013-2016年在美国密歇根州立大学从事博士后研究。现在为上海财经大学统计与管理学院助理教授。主要研究兴趣为基因数据、高维数据,以及相关的非参数半参数统计建模。在包括国际顶级期刊在内的刊物发表10多篇论文。